
3/29/2014 Android-x86 Desktop Howto

http://arachnoid.com/android/Android-x86/index.html 1/5

I

Home | Android | Android-x86 Desktop Howto Share This Page

Android-x86 Desktop Howto
A step-by-step guide for Android kernel configuring and compiling

Copyright © 2014, Paul Lutus — Message Page

Introduction | Acquire source and prep | Install and test
Dual/multi boot configuration

(double-click any word to see its definition)

Click here to download this article in PDF form

Figure 1: Laptop running a popular program under Android-x86
Introduction

have recently been developing software for the Android platform and have become pretty enthusiastic about its
possibilities. I recently became aware of a project named Android-x86 that lets Android run on an x86 platform
like a laptop or a desktop running an x86 processor. Some may wonder why someone would want to do this to a
perfectly good tablet OS, but to a developer, the reasons are more obvious — you can test software more easily
and quickly than with a small Android device, you can set up dual-boot configurations to make Android accessible

on machines with lots of resources, you can test different display and peripheral configurations more easily than on a
small Android device.

But after downloading several versions of the Android-x86 runtimes, I saw a problem — the default kernel was missing
drivers required to support the hardware needed to run on a desktop machine. So I decided to download the source,
configure the kernel and compile locally for my requirements.

It's been years since I needed to recompile the Linux kernel on a regular basis. Because of the much wider adoption of
Linux since I started using it, and because of a more complete set of runtime modules, most things I added by hand
in the old days are now included by default in stock kernels. But Android is a special case — its Linux kernel is
designed to be as small as practical to work on a small platform, using the smallest practical amount of memory and
CPU clock cycles. So moving Android to a laptop or desktop environment represents a philosophical as well as practical
departure.

This howto explains how to get the Android-x86 source, modify it, compile it, and install it on a laptop or desktop
machine.

Acquire source and prep

The developers behind Android-x86 have expended a lot of time and energy configuring their environment to be
suitable for laptops and other small x86 environments, and their default packages will run on many laptops, but — for
lack of much SATA drive support — it's compatible with fewer modern desktop machines. My primary reason for this
project was to make the kernel more accommodating of different system requirements.

When I realized I was going to have to configure and compile a special version of the Android-x86 kernel, I naturally
enough looked around for guidance and found this guide — an astonishingly uninformative source of information.
After struggling to decode this guide, I decided to start over and craft my own methods — and my own description.

http://arachnoid.com/index.html
http://arachnoid.com/android/AnchorSentinel/index.html
http://arachnoid.com/android/AnchorSentinel/index.html
http://arachnoid.com/android/CarpeTempus/index.html
http://arachnoid.com/administration/submit.php
http://arachnoid.com/android/administration/index.html
http://arachnoid.com/android/messages/index.php
http://arachnoid.com/android/Android-x86/resources/Android-x86%20Desktop%20Howto.pdf
http://www.android-x86.org/
http://www.android-x86.org/documents/customizekernel

3/29/2014 Android-x86 Desktop Howto

http://arachnoid.com/android/Android-x86/index.html 2/5

First, even though Android includes a Linux kernel, compiling Android isn't very much like compiling a Linux kernel by
itself. Notwithstanding that the point of this project is to modify just the kernel, it's necessary to have the entire
Android source present for the compilation. The following list of steps assumes a Ubuntu/Kubuntu Linux working
environment, but it should be reasonably portable across Linux distributions. This plan also tries for the least amount
of effort and complexity — it modifies and compiles a new Android kernel, then drops this replacement into the
directory tree of a stock Android-x86 installation.

Okay, let's get started.

Your system will need some libraries for development work. The command below should provide most of them,
or tell you that you already have them:

a p t . g e t i n s t a l l g c c p y t h o n - l u n c h l i b q t 4 - c o r e l i b q t 4 - g u i q t 4 - d e f a u l t g c c - m u l t i l i b d i s t c c
c c a c h e

The above can only guess at what resources your system doesn't have, or that my system has that I don't
realize. In most cases your system will tell you what it lacks.

Acquire the Android-x86 source using these instructions :

$ m k d i r a n d r o i d - x 8 6
$ c d a n d r o i d - x 8 6
$ r e p o i n i t - u h t t p : / / g i t . a n d r o i d - x 8 6 . o r g / m a n i f e s t - b k i t k a t - x 8 6
$ r e p o s y n c

The green text above is a matter of choice. Visit the source page to see the options, and as time passes, this
specification is likely to change.

Warning: At the time of writing, the above download is over 14 gigabytes in size. Therefore I recommend
making a backup copy, because any number of errors in what follows could corrupt the directory tree in a way
that might require it to be replaced.

For the remainder of these instructions, let's assume the existence of a work directory we'll arbitrarily call "work",
under which the above-created android-x86 source directory is placed. Like this:

/work
└ /android-x86

Now create a directory that will contain our custom configuration. Locate it this way:

/work
├ /android-x86
└ /config

Now locate the default kernel configuration and move a copy into our custom configuration directory:

Make a copy of this file: / w o r k / a n d r o i d - x 8 6 / k e r n e l / a r c h / x 8 6 / c o n f i g s / a n d r o i d - x 8 6 _ d e f c o n f i g

Change the copy's name to ".config" and put it here: / w o r k / c o n f i g / . c o n f i g

The configuration file should appear in the tree as shown here:

/work
├ /android-x86
└ /config

 └ .config

Now to configure the kernel. Open a shell in the android-x86 directory and execute the instructions below (or
create a shell script to execute them):

$. b u i l d / e n v s e t u p . s h
$ e x p o r t A R C H = x 8 6
$ l u n c h a n d r o i d _ x 8 6 - e n g
$ m a k e - C k e r n e l O = / w o r k / c o n f i g / . c o n f i g x c o n f i g

Assuming no missing libraries or typographical errors, the above should launch an easy-to-use GUI kernel option
selection dialog that looks like this:

http://www.android-x86.org/getsourcecode
http://www.android-x86.org/getsourcecode

3/29/2014 Android-x86 Desktop Howto

http://arachnoid.com/android/Android-x86/index.html 3/5

Make any option changes you require, remembering that many of the pre-existing settings resulted from a great
deal of thought and work (meaning don't change things you don't understand). In my case, to make desktop
operation possible, I needed to add SATA drive support, and the drivers needed to be statically linked.

Save your changes and exit the dialog. This action will place the changes in the file we created above — with the
advantage that it is located outside the source tree, so if we must replace or refresh the source, our
configuration changes will be preserved.

Now we move to compilation. Before we actually perform a compilation run, I want to strongly recommend the
use of d i s t c c , a utility that distributes compilation tasks across multiple machines to improve speed. If you
decide to run d i s t c c :

Install distcc on each machine on your local network:

a p t - g e t i n s t a l l d i s t c c c c a c h e

For each distcc installation, edit its configuration (/etc/default/distcc) to include these options:

S T A R T D I S T C C = " t r u e " # m e a n i n g a t b o o t
A L L O W E D N E T S = " 1 9 2 . 1 6 8 . 0 . 0 / 1 6 " # s e t t o y o u r l o c a l n e t w o r k
L I S T E N E R = " 0 . 0 . 0 . 0 " # m e a n i n g l i s t e n t o a n y s o u r c e
N I C E = " 4 " # i . e . n o t v e r y n i c e
J O B S = " 4 " # u s u a l l y s e t t o t h e n u m b e r o f p r o c e s s o r s o n t h e m a c h i n e
Z E R O C O N F = " t r u e " # v e r y i m p o r t a n t : m e a n s n o d i s t c c h o s t f i l e n e e d s t o b e m a i n t a i n e d

Now for a compilation run. Move into the android-x86 source directory and issue these commands (or write a
shell script to run them):

e x p o r t A R C H = x 8 6
e x p o r t T A R G E T _ P R O D U C T = a n d r o i d _ x 8 6
e x p o r t T A R G E T _ K E R N E L _ C O N F I G = / w o r k / c o n f i g / . c o n f i g
e x p o r t C C = " d i s t c c g c c " # o n l y i f u s i n g d i s t c c
e x p o r t C X X = " d i s t c c g + + " # o n l y i f u s i n g d i s t c c
m a k e c l e a n # o p t i o n a l , f i r s t t i m e
e i t h e r :
m a k e k e r n e l - j 1 6 # i f u s i n g d i s t c c , " - j (n) " n = c o r e s x h o s t s
o r :
m a k e k e r n e l - j 4 # i f n o t u s i n g d i s t c c , v e r y s l o w

This should start the compilation. I should warn you that people in the Android-x86 discussion forum report
compilations that take days, because they have just one computer, and one that's not meant for development
work. This is why I recommend d i s t c c on every machine you can get your hands on and network up.

https://groups.google.com/forum/#!forum/android-x86

3/29/2014 Android-x86 Desktop Howto

http://arachnoid.com/android/Android-x86/index.html 4/5

On subsequent compiles, for example to test the effect of different option selections, it may not be necessary to
"make clean" as shown above, a step that forces a complete recompilation. In most cases skipping this step will
produce a much quicker result.

The result of a successful compilation will be this file: / w o r k / s o u r c e / o u t / t a r g e t / p r o d u c t / x 8 6 / k e r n e l , used in
our next step.

If something goes wrong, and in particular if you think you need to start with the original source tree, you can
save a lot of time by using rsync to synchronize the work source with a backup copy of the original, unmodified
source (the one you wisely backed up earlier). Resynchronize your working copy with the backup like this:

$ r s y n c - a - - d e l e t e / b a c k u p - s o u r c e - l o c a t i o n / w o r k / a n d r o i d - x 8 6

The above synchronization method is much faster than syncing to source online, and it's one of several reasons
to have a full backup. It also shows why it's important to locate the custom configuration outside the source
tree.

Install and test

There's a simple way to test a new kernel — just drop it into an existing installation of Android-x86. In fact, because
of the driver issue this project addresses, I wasn't able to install Android-x86 on any of my desktop machines (the
install version of Android-x86 couldn't detect the drives either). So instead I installed onto a USB stick, then copied
the resulting installation onto a new partition on one of the desktop machines I wanted to test. By "result" I mean the
entire installation — I copied the entire "android-4.4-RC1" directory (the version current at the time of writing) onto
the target partition.

To avoid confusion, let's list the steps:

Download an Android-x86 installation ISO from this page .
Using your platform's tools, burn the installation ISO onto a USB stick or a CD.
Boot the installation media and see if it can detect your desired installation target, and be careful — don't
assume the installation program will detect only empty partitions and spare storage devices.
If the installation program successfully detects your install target, proceed with the installation.
If (as in my case) it's necessary to install to a substitute medium like a USB stick, in preparation for installation
on an unrecognized device:

Boot the machine in the usual way, in which all the devices can be detected.
Copy the successful installation onto an empty, formatted target.

If the desired target is a hard drive partition on a laptop or desktop machine:

It's possible and sometimes desirable to shrink an existing partition and create a new, smaller partition to
accommodate Android-x86:

The easiest way to change partitions, or create new partitions, on an existing drive, is to run Gparted
from a bootable CD or USB stick (because the drive being operated on must be unmounted).
I usually have a few copies of a great small Linux distribution called Knoppix installed on USB sticks, and
Knoppix always has Gparted among its tools.
I typically boot a Knoppix USB stick, which allows me to manipulate the partitions on a drive that is
normally mounted and therefore inaccessible to modification.
Remember that if you change a drive's boot partition in any significant way, you need to reinstall Grub on
that drive. This can be a bit tricky because the current Knoppix version at the time of writing (7.2) has
legacy Grub installed, but most modern Linux distributions have Grub 2 installed. To make matters worse,
Grub 2 is called "grub", responds to the same commands, but produces different results.
Given that, and not wishing to get into a difficult topic, for the present purpose I will recommend that you
avoid changing the location of the boot partition while making room for Android-86.

Assuming you have created a suitable partition with filetype ext2 or ext3, simply copy an entire successful
installation from (for example) a USB stick to the new partition.

Then, to test a new kernel, simply copy the result of the prior section's compilation into a working Android-x86
installation — copy the kernel from / w o r k / s o u r c e / o u t / t a r g e t / p r o d u c t / x 8 6 / k e r n e l to (t a r g e t p a t h) / A n d r o i d - 4 . 4 -
R C 1 / k e r n e l — and reboot.

Dual/multi boot configuration

This is an extra topic, beyond the main purpose of compiling and testing a modified kernel, but it's very useful to be
able to choose which OS to run when booting a machine.

Most modern Linux distributions have moved from legacy Grub to Grub 2. In legacy Grub, one could simply edit a file
located at /boot/grub/menu.lst, add or move a menu entry, then reboot. Things are a bit more complex in Grub 2.

In Grub 2, the boot sequence and menu items are defined by files located under / e t c / g r u b . d . To add one or more
menu items, you:

Write a special configuration file to be explained below,
Put the file in the /etc/grub.d directory,
Make the file executable (c h m o d + x (p a t h t o f i l e)),
Issue the command u p d a t e - g r u b as root.

http://www.android-x86.org/download
http://gparted.org/
http://www.knopper.net/knoppix/index-en.html

3/29/2014 Android-x86 Desktop Howto

http://arachnoid.com/android/Android-x86/index.html 5/5

Here's an example of such a configuration script, suitable for dual/multi booting Android-x86 along with other
operating systems:

! / b i n / s h

e c h o " $ 0 : A n d r o i d - 4 . 4 - R C 1 (o n / d e v / s d a 4) " > & 2
e x e c t a i l - n + 4 $ 0

m e n u e n t r y " A n d r o i d a n d r o i d - 4 . 4 - R C 1 N o r m a l (o n / d e v / s d a 4) " {
 s e t r o o t = (h d 0 , 4)
 l i n u x / a n d r o i d - 4 . 4 - R C 1 / k e r n e l r o o t = / d e v / r a m 0 \
 a n d r o i d b o o t . h a r d w a r e = a n d r o i d _ x 8 6 a c p i _ s l e e p = s 3 _ b i o s , s 3 _ m o d e \
 S R C = / a n d r o i d - 4 . 4 - R C 1 D P I = 1 6 0 U V E S A _ M O D E = 1 2 8 0 x 1 0 2 4
 i n i t r d / a n d r o i d - 4 . 4 - R C 1 / i n i t r d . i m g
}

m e n u e n t r y " A n d r o i d a n d r o i d - 4 . 4 - R C 1 D e b u g (o n / d e v / s d a 4) " {
 s e t r o o t = (h d 0 , 4)
 l i n u x / a n d r o i d - 4 . 4 - R C 1 / k e r n e l p n p . d e b u g = 1 r o o t = / d e v / r a m 0 \
 a n d r o i d b o o t . h a r d w a r e = a n d r o i d _ x 8 6 a c p i _ s l e e p = s 3 _ b i o s , s 3 _ m o d e \
 S R C = / a n d r o i d - 4 . 4 - R C 1 D E B U G = 1 D P I = 1 6 0 U V E S A _ M O D E = 1 2 8 0 x 1 0 2 4
 i n i t r d / a n d r o i d - 4 . 4 - R C 1 / i n i t r d . i m g
}

Here are some notes about the script:

The line "set root=(hd0,4)" identifies the Android-x86 partition.
The first number (0) refers to /dev/sda. For /dev/sdb it would be 1 and so forth.
The second number refers to the partition -- (4) refers to the fourth partition, so hd0,4 = /dev/sda4.
If your drive or partition differ, change every appearance of "hd0,4" to meet your requirements.

The lines beginning with "linux" and "initrd" give the location of their respective files on the named device. If the
directory name on the Android-x86 installation isn't "android-4.4-RC1", all appearances of this name need to be
changed.

The DPI=160 entry provides a hint about the display's pixel density in dots per inch. This is an important setting
-- if the Android display's icons and text look too small and crowded, increase this number. If things seem too
big, make it smaller.

The UVESA_MODE=1280x1024 entry describes the display size. This is also an important setting. If you know
your display's actual dimensions, enter them here. But not all dimensions work -- it sometimes happens that a
display specification that's possible in principle isn't feasible in practice.

Once you've edited the above configuration to suit your environment:

Create a file named "45_android" or another suitable name that doesn't conflict with any existing files and
has a number higher than any others in the / e t c / g r u b . d directory.
Put the file in / e t c / g r u b . d .
Make the file executable: c h m o d + x (f i l e p a t h)
Issue the command u p d a t e - g r u b as root.

If no errors were generated, you can reboot and choose the Android-x86 entry from your new Grub boot menu, and
run Android on your laptop or desktop.

Home | Android | Android-x86 Desktop Howto Share This Page

http://arachnoid.com/index.html
http://arachnoid.com/android/AnchorSentinel/index.html
http://arachnoid.com/android/AnchorSentinel/index.html
http://arachnoid.com/android/CarpeTempus/index.html
http://arachnoid.com/administration/submit.php

